

 [image: Kurento logo]

Table of Contents

	Introduction
	Example

	Source code

	Content of this documentation

	Repository Server
	Dependencies

	Binaries

	Configuration

	Logging configuration

	Execution

	Run at user-level

	Run as daemon

	Version upgrade

	Installation over MongoDB

	Repository REST API
	Create repository item

	Remove repository item

	Get repository item read endpoint

	Find repository items by metadata

	Find repository items by metadata regex

	Get the metadata of a repository item

	Update the metadata of a repository item

	Repository Client
	Repository Java API

	Repository internals

	Repository JavaDoc
	Kurento Repository Server

	Kurento Repository Client

	Kurento Repository Internal

	Glossary

	Index

 [image: Kurento logo]

Introduction

Welcome to the Kurento Repository project. This piece of software is part of
Kurento [http://www.kurento.org/], and it allows to manage media
repositories based on the storage capabilities provided by a file system or an
instance of MongoDB. The following picture illustrates the architecture
of the Kurento Repository:

[image: Kurento Repository Architecture]
Kurento Repository Architecture

As it can be seen, the Kurento Repository has been designed following a
client-server architecture. Therefore, it has two main components:

	kurento-repository-server : Stand-alone application which implements a
media repository, exposing its capabilities through an easy-to-use
HTTP REST API. It has been implement as a Spring Boot
application.

	kurento-repository-client : Java library that wraps the REST
communication with the server, exposing a Java API which can be consumed in
Java applications.

In short, the kurento-repository-server allows media recording and playing.
These capabilities can be consumed by any application by means of the REST API,
of specifically by Java application using the kurento-repository-client. The
media in the repository can be consumed by kurento-media-server using HTTP as
transport.

Example

There is a Kurento Java
tutorial application [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-repository]
that connects to a running instance of the kurento-repository-server to
record and play media over HTTP using the capabilities of the
Kurento Media Server [http://www.kurento.org].

Source code

Kurento Repository is open source (Apache 2.0) and it is hosted on
GitHub [https://github.com/Kurento/kurento-java/tree/master/kurento-repository].
This Git repository contains a Maven project with the following modules:

	kurento-java: Reactor project.

	kurento-repository-server: Contains a Spring Boot application, very easy
to setup and run. It exposes the HTTP REST API

	kurento-repository-client: Wrapper for the library, offering a simpler
Java API.

	kurento-repository-internal: core Java library of repository. Plain Java
mostly, but with Spring dependencies.

Content of this documentation

In order to learn how to build, configure and run the server application, please
refer to the Repository Server section. The
REST API that can be used to communicate with the
server are described in the next section. The Java API is depicted on the
section repository client. The complete
JavaDoc reference is also provided. Finally, a
reference of the most important terms handled in this documentation is
summarized in the glossary section.

Repository Server

This section explains how to build configure and run the Kurento Repository
server as a standalone application.

Dependencies

	Ubuntu 14.04 LTS

	Java JDK version 7 or 8

	MongoDB (we provide an install guide)

	Kurento Media Server or connection with a running instance (to
install follow the
official guide [http://doc-kurento.readthedocs.org/en/stable/installation_guide.html])

Binaries

To build the installation binaries from the source code you’ll need to have
installed on your machine Git, Java JDK and Maven.

Clone the parent project, kurento-java from its
GitHub repository [https://github.com/Kurento/kurento-java].

$ git clone git@github.com:Kurento/kurento-java.git

Then build the kurento-repository-server project together with its required
modules:

$ cd kurento-java
$ mvn clean package -DskipTests -Pdefault -am \
 -pl kurento-repository/kurento-repository-server

Now unzip the generated install binaries (where x.y.z is the current version
and could include the -SNAPSHOT suffix):

$ cd kurento-repository/kurento-repository-server/target
$ unzip kurento-repository-server-x.y.z.zip

Configuration

The configuration file, kurento-repo.conf.json is located in the config
folder inside the uncompressed installation binaries. When installing the
repository as a system service, the configuration files will be located after
the installation inside /etc/kurento.

$ cd kurento-repository-server-x.y.z
$ vim config/kurento-repo.conf.json

The default contents of the configuration file:

{
 "repository": {
 "port": 7676,
 "hostname": "127.0.0.1",

 //mongodb or filesystem
 "type": "mongodb",

 "mongodb": {
 "dbName": "kurento",
 "gridName": "kfs",
 "urlConn": "mongodb://localhost"
 },
 "filesystem": {
 "folder": "/tmp/repository"
 }
 }
}

These properties and their values will configure the repository application.

	port and hostname are where the HTTP repository servlet will be
listening for incoming connections (REST API).

	type indicates the storage type. The repository that stores media
served by KMS can be backed by GridFS on MongoDB or it can use file storage
directly on the system’s disks (regular filesystem).

	
	mongodb configuration:

	
	dbname is the database name

	gridName is the name of the gridfs collection used for the
repository

	urlConn is the connection to the Mongo database

	
	filesystem configuration:

	
	folder is a local path to be used as media storage

Logging configuration

The logging configuration is specified by the file
kurento-repo-log4j.properties, also found in the config folder.

$ cd kurento-repository-server-x.y.z
$ vim config/kurento-repo-log4j.properties

In it, the location of the server’s output log file can be set up, the default
location will be kurento-repository-server-x.y.z/logs/ (or
/var/log/kurento/ for system-wide installations).

To change it, replace the ${kurento-repo.log.file} variable for an absolute
path on your system:

Execution

There are two options for running the server:

	user-level execution - doesn’t need additional installation steps, can be
done right after uncompressing the installer

	system-level execution - requires installation of the repository application
as a system service, which enables automatic startup after system reboots

In both cases, as the application uses the Spring Boot framework, it
executes inside an embedded Tomcat container instance, so there’s no need for
extra deployment actions (like using a third-party servlet container). If
required, the project’s build configuration could be modified in order to
generate a WAR instead of a JAR.

Run at user-level

After having configured the server instance just
execute the start script:

$ cd kurento-repository-server-x.y.z
$./bin/start.sh

Run as daemon

First install the repository after having built and uncompressed the generating
binaries. sudo privileges are required to install it as a service:

$ cd kurento-repository-server-x.y.z
$ sudo ./bin/install.sh

The service kurento-repo will be automatically started.

Now, you can configure the repository as stated in the
previous section and restart the service.

$ sudo service kurento-repo {start|stop|status|restart|reload}

Version upgrade

To update to a newer version, it suffices to follow once again the installation
procedures.

Installation over MongoDB

For the sake of testing kurento-repository on Ubuntu (14.04 LTS 64 bits),
the default installation of MongoDB is enough. Execute the following commands
(taken from MongoDB
webpage [http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/]):

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
$ echo "deb http://repo.mongodb.org/apt/ubuntu \
 "$(lsb_release -sc)"/mongodb-org/3.0 multiverse" \
 | sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list
$ sudo apt-get update
$ sudo apt-get install -y mongodb-org

Repository REST API

This section details the REST API through which an application can communicate
with the Kurento Repository Server.

There’s also the possibility to integrate the server as a Spring component and
in this case the class org.kurento.repository.RepositoryService can be used
to control the Repository as an instance local to the application. The REST API
maps over the service’s one, so the methods and parameters involved are the
exact same ones.

Primitives provided by the repository server, can be used to control items from
the repository (add, delete, search, update, get download URL).

	Create repository item

	Remove repository item

	Get repository item read endpoint

	Find repository items by metadata

	Find repository items by metadata regex

	Get the metadata of a repository item

	Update the metadata of a repository item

Create repository item

	Description: Creates a new repository item with the provided metadata and
its associated recorder endpoint.

	Request method and URL: POST /repo/item

	Request Content-Type: application/json

	Request parameters: Pairs of key-value Strings in JSON format (a
representation of the Java object Map<String, String>).

	Parameter

	Type

	Description

	keyN

	O

	Metadata associated to keyN

	M=Mandatory, O=Optional

	Request parameters example:

{
 "key1": "value1",
 "keyN": "valueN"
}

	Response elements: Returns an entity of type application/json
including a POJO of type RepositoryItemRecorder with the following
information:

	Element

	Type

	Description

	id

	M

	Public ID of the newly created item

	url

	M

	URL of the item’s recording Http endpoint

	M=Mandatory, O=Optional

	Response example:

{
 "id": "Item's public ID",
 "url": "Recorder Http endpoint"
}

	Response Codes:

	Code

	Description

	200 OK

	New item created and ready for recording.

Remove repository item

	Description: Removes the repository item associated to the provided id.

	Request method and URL: DELETE /repo/item/{itemId}

	Request Content-Type: NONE

	Request parameters: The item’s ID is coded in the URL’s path info.

	Parameter

	Type

	Description

	itemId

	M

	Repository item’s identifier

	M=Mandatory, O=Optional

	Response elements: NONE

	Response Codes:

	Code

	Description

	200 OK

	Item successfully deleted.

	404 Not Found

	Item does not exist.

Get repository item read endpoint

	Description: Obtains a new endpoint for reading (playing
multimedia) from the repository item.

	Request method and URL: GET /repo/item/{itemId}

	Request Content-Type: NONE

	Request parameters: The item’s ID is coded in the URL’s path info.

	Parameter

	Type

	Description

	itemId

	M

	Repository item’s identifier

	M=Mandatory, O=Optional

	Response elements: Returns an entity of type application/json
including a POJO of type RepositoryItemPlayer with the following
information:

	Element

	Type

	Description

	id

	M

	Public ID of the newly created item

	url

	M

	URL of the item’s reading (playing) Http endpoint

	M=Mandatory, O=Optional

	Response example:

{
 "id": "Item's public ID",
 "url": "Player Http endpoint"
}

	Response Codes:

	Code

	Description

	200 OK

	New player item created.

	404 Not Found

	Item does not exist.

Find repository items by metadata

	Description: Searches for repository items by each pair of attributes and
their exact values.

	Request method and URL: POST /repo/item/find

	Request Content-Type: application/json

	Request parameters: Pairs of key-value Strings in JSON format (a
representation of the Java object Map<String, String>).

	Parameter

	Type

	Description

	searchKeyN

	M

	Metadata associated to searchKeyN

	M=Mandatory, O=Optional

	Request parameters example:

{
 "searchKey1": "searchValue1",
 "searchKeyN": "searchValueN"
}

	Response elements: Returns an entity of type application/json including
a POJO of type Set<String> with the following information:

	Element

	Type

	Description

	idN

	O

	
Id of the N-th repository item whose metadata

matches one of the search terms

	M=Mandatory, O=Optional

	Response example:

["id1", "idN"]

	Response Codes:

	Code

	Description

	200 OK

	Query successfully executed.

Find repository items by metadata regex

	Description: Searches for repository items by each pair of attributes and
their values which can represent a regular expression (
Perl compatible regular expressions [http://php.net/manual/en/book.pcre.php]).

	Request method and URL: POST /repo/item/find/regex

	Request Content-Type: application/json

	Request parameters: Pairs of key-value Strings in JSON format (a
representation of the Java object Map<String, String>).

	Parameter

	Type

	Description

	searchKeyN

	M

	Regex for metadata associated to searchKeyN

	M=Mandatory, O=Optional

	Request parameters example:

{
 "searchKey1": "searchRegex1",
 "searchKeyN": "searchRegexN"
}

	Response elements: Returns an entity of type application/json including
a POJO of type Set<String> with the following information:

	Element

	Type

	Description

	idN

	O

	
Id of the N-th repository item whose metadata

matches one of the search terms

	M=Mandatory, O=Optional

	Response example:

["id1", "idN"]

	Response Codes:

	Code

	Description

	200 OK

	Query successfully executed.

Get the metadata of a repository item

	Description: Returns the metadata from a repository item.

	Request method and URL: GET /repo/item/{itemId}/metadata

	Request Content-Type: NONE

	Request parameters: The item’s ID is coded in the URL’s path info.

	Parameter

	Type

	Description

	itemId

	M

	Repository item’s identifier

	M=Mandatory, O=Optional

	Response elements: Returns an entity of type application/json
including a POJO of type Map<String, String> with the following information:

	Element

	Type

	Description

	keyN

	O

	Metadata associated to keyN

	M=Mandatory, O=Optional

	Response example:

{
 "key1": "value1",
 "keyN": "valueN"
}

	Response Codes:

	Code

	Description

	200 OK

	Query successfully executed.

	404 Not Found

	Item does not exist.

Update the metadata of a repository item

	Description: Replaces the metadata of a repository item with the provided
values from the request’s body.

	Request method and URL: PUT /repo/item/{itemId}/metadata

	Request Content-Type: application/json

	Request parameters: The item’s ID is coded in the URL’s path info and the
request’s body contains key-value Strings in JSON format (a representation of
the Java object Map<String, String>).

	Parameter

	Type

	Description

	itemId

	M

	Repository item’s identifier

	keyN

	O

	Metadata associated to keyN

	M=Mandatory, O=Optional

	Request parameters example:

{
 "key1": "value1",
 "keyN": "valueN"
}

	Response elements: NONE

	Response Codes:

	Code

	Description

	200 OK

	Item successfully updated.

	404 Not Found

	Item does not exist.

Repository Client

This Java library belonging to the Kurento Repository stack has been designed
using the Retrofit framework in order to provide a Java wrapper for the
HTTP REST interface exposed by the repository
server.

Repository Java API

This API maps directly over the
REST interface layer, in such a way that the
primitives exposed by this library mirror the REST ones.

The Java documentation included in org.kurento.repository.RepositoryClient
and its factory org.kurento.repository.RepositoryClientProvider is quite
detailed so it shouldn’t be very difficult to set up a client connected to a
running Kurento Repository Server (don’t forget to check our tutorials, and
especially the
kurento-hello-world-repository [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-repository]).

This library can be imported as a Maven dependency and then instances of
org.kurento.repository.RepositoryClient can be created in order to interact
with the repository server. The Maven artifact to be included in you pom.xml is

<dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-repository-client</artifactId>
 <version>6.6.1-SNAPSHOT</version>
</dependency>

We provide a Kurento Java tutorial,
kurento-hello-world-repository [https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-recording]
, which uses this library to save the streamed media from a web browser using a
repository server instance.

Repository internals

The internal library of Kurento Repository provides an API that can be used to
manage media repositories based on filesystem or MongoDB.

The chosen transport for the media is the HTTP protocol. The repository API will
provide managed URIs which the application or Kurento Media Server can
use to upload or download media.

This library can be configured and instantiated as a Spring bean. Although, it
shouldn’t be used directly but through the
repository server which offers a REST and Java APIs
which should suffice for most applications.

Repository JavaDoc

Kurento Repository Server

	kurento-repository-server

Kurento Repository Client

	kurento-repository-client

Kurento Repository Internal

	kurento-repository-internal

Glossary

This is a glossary of terms that often appear in discussion about multimedia
transmissions. Most of the terms are described and linked to its wikipedia, RFC
or W3C relevant documents. Some of the terms are specific to kurento.

	BSON

	It’s a computer data interchange format used mainly as a data storage and network transfer format in the MongoDB database. It is a binary form for representing simple data structures and associative arrays (called objects or documents in MongoDB).

	HTTP

	The Hypertext Transfer Protocol
is an application protocol for distributed, collaborative, hypermedia
information systems. HTTP is the foundation of data communication for
the World Wide Web.

See also

RFC 2616 [https://tools.ietf.org/html/rfc2616.html]

	JSON

	JSON [http://json.org] (JavaScript Object Notation) is a lightweight
data-interchange format. It is designed to be easy to understand and
write for humans and easy to parse for machines.

	JSON-RPC

	JSON-RPC [http://json-rpc.org/] is a simple remote procedure
call protocol encoded in JSON. JSON-RPC allows for notifications
and for multiple calls to be sent to the server which may be
answered out of order.

	Kurento

	Kurento [http://kurento.org] is a platform for the development of multimedia
enabled applications. Kurento is the Esperanto term for the English word
‘stream’. We chose this name because we believe the Esperanto principles are
inspiring for what the multimedia community needs: simplicity, openness and
universality. Kurento is open source, released under Apache 2.0, and has several
components, providing solutions to most multimedia common services
requirements. Those components include: Kurento Media Server,
Kurento API, Kurento Protocol, and Kurento Client.

	Kurento API

	Kurento API is an object oriented API to create media pipelines to control
media. It can be seen as and interface to Kurento Media Server. It can be used from the
Kurento Protocol or from Kurento Clients.

	Kurento Client

	A Kurento Client is a programming library (Java or JavaScript) used to control
Kurento Media Server from an application. For example, with this library, any developer
can create a web application that uses Kurento Media Server to receive audio and video from
the user web browser, process it and send it back again over Internet. Kurento Client
exposes the Kurento API to app developers.

	Kurento Protocol

	Communication between KMS and clients by means of JSON-RPC messages.
It is based on WebSocket that uses JSON-RPC V2.0 messages for making
requests and sending responses.

	Kurento Media Server

	Kurento Media Server is the core element of Kurento since it responsible for media
transmission, processing, loading and recording.

	Maven

	Maven [http://maven.apache.org/] is a build automation tool used primarily for Java projects.

	MongoDB

	MongoDB (from humongous) is a cross-platform
document-oriented database. Classified as a NoSQL database, MongoDB
eschews the traditional table-based relational database structure in
favor of JSON-like documents with dynamic schemas (MongoDB calls the
format BSON), making the integration of data in certain types of
applications easier and faster. MongoDB is free and open-source software.

See also

MongoDB page at Wikipedia

MongoDB official page [https://www.mongodb.org]

	Multimedia

	Multimedia is concerned with the computer controlled integration
of text, graphics, video, animation, audio, and any other media where
information can be represented, stored, transmitted and processed
digitally.

There is a temporal relationship between many forms of media,
for instance audio, video and animations. There 2 are forms of problems
involved in

	Sequencing within the media, i.e. playing frames in correct
order or time frame.

	Synchronisation, i.e. inter-media scheduling. For example,
keeping video and audio synchronized or displaying captions
or subtitles in the required intervals.

See also

Wikipedia definition of Multimedia

	REST

	Representational State Transfer
is an architectural style consisting of a coordinated set of constraints applied to
components, connectors, and data elements, within a distributed hypermedia system.
The term representational state transfer was introduced and defined in 2000 by
Roy Fielding in his doctoral dissertation [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm].

	Retrofit

	Retrofit is a type-safe REST client for Android built by Square. As
stated on its webpage, it turns your HTTP API into a Java interface.

See also

Retrofit [http://square.github.io/retrofit/]
home page with documentation and examples

	Sphinx

	Documentation generation system used for Brandtalk documentation.

See also

Easy and beautiful documentation with Sphinx [http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat]

	Spring Boot

	Spring Boot [http://projects.spring.io/spring-boot/] is Spring’s convention-over-configuration
solution for creating stand-alone, production-grade Spring based applications that can you can “just run”.
It embeds Tomcat or Jetty directly and so there is no need to deploy WAR files in order to run
web applications.

	WebSocket

	WebSocket [https://www.websocket.org/] specification (developed as
part of the HTML5 initiative) defines a full-duplex single socket
connection over which messages can be sent between client and server.

Index

 B
 | H
 | J
 | K
 | M
 | R
 | S
 | W

B

 	
 	BSON

H

 	
 	HTTP

J

 	
 	JSON

 	
 	JSON-RPC

K

 	
 	Kurento

 	Kurento API

 	
 	Kurento Client

 	Kurento Media Server

 	Kurento Protocol

M

 	
 	Maven

 	
 	MongoDB

 	Multimedia

R

 	
 	REST

 	Retrofit

 	
 	
 RFC

 	RFC 2616

S

 	
 	Sphinx

 	
 	Spring Boot

W

 	
 	WebSocket

Table of Contents

	Introduction
	Example

	Source code

	Content of this documentation

	Repository Server
	Dependencies

	Binaries

	Configuration

	Logging configuration

	Execution

	Run at user-level

	Run as daemon

	Version upgrade

	Installation over MongoDB

	Repository REST API
	Create repository item

	Remove repository item

	Get repository item read endpoint

	Find repository items by metadata

	Find repository items by metadata regex

	Get the metadata of a repository item

	Update the metadata of a repository item

	Repository Client
	Repository Java API

	Repository internals

	Glossary

 _static/comment-bright.png

_images/kurento-repository-architecture.png
Javaapplication

REST API MongoDB
® kurento-repository-client kurento-repository-server or
Filesytem

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/kurento-rect-logo3.png
@ HKURENTO

_static/kurento-white.png

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Introduction

 		
 Example

 		
 Source code

 		
 Content of this documentation

 		
 Repository Server

 		
 Dependencies

 		
 Binaries

 		
 Configuration

 		
 Logging configuration

 		
 Execution

 		
 Run at user-level

 		
 Run as daemon

 		
 Version upgrade

 		
 Installation over MongoDB

 		
 Repository REST API

 		
 Create repository item

 		
 Remove repository item

 		
 Get repository item read endpoint

 		
 Find repository items by metadata

 		
 Find repository items by metadata regex

 		
 Get the metadata of a repository item

 		
 Update the metadata of a repository item

 		
 Repository Client

 		
 Repository Java API

 		
 Repository internals

 		
 Repository JavaDoc

 		
 Kurento Repository Server

 		
 Kurento Repository Client

 		
 Kurento Repository Internal

 		
 Glossary

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

