
KurentoRepository Documentation
Release 6.6.1-dev

kurento.org

Mar 27, 2020

Contents

1 Introduction 3
1.1 Example . 4
1.2 Source code . 4
1.3 Content of this documentation . 4

2 Repository Server 5
2.1 Dependencies . 5
2.2 Binaries . 5
2.3 Configuration . 6
2.4 Logging configuration . 6
2.5 Execution . 7
2.6 Run at user-level . 7
2.7 Run as daemon . 7
2.8 Version upgrade . 7
2.9 Installation over MongoDB . 7

3 Repository REST API 9
3.1 Create repository item . 9
3.2 Remove repository item . 10
3.3 Get repository item read endpoint . 11
3.4 Find repository items by metadata . 11
3.5 Find repository items by metadata regex . 12
3.6 Get the metadata of a repository item . 13
3.7 Update the metadata of a repository item . 14

4 Repository Client 15
4.1 Repository Java API . 15
4.2 Repository internals . 15

5 Glossary 17

Index 19

i

ii

KurentoRepository Documentation, Release 6.6.1-dev

Contents 1

KurentoRepository Documentation, Release 6.6.1-dev

2 Contents

CHAPTER 1

Introduction

Welcome to the Kurento Repository project. This piece of software is part of Kurento, and it allows to manage media
repositories based on the storage capabilities provided by a file system or an instance of MongoDB. The following
picture illustrates the architecture of the Kurento Repository:

Fig. 1: Kurento Repository Architecture

As it can be seen, the Kurento Repository has been designed following a client-server architecture. Therefore, it has
two main components:

• kurento-repository-server : Stand-alone application which implements a media repository, exposing its capa-
bilities through an easy-to-use HTTP REST API. It has been implement as a Spring Boot application.

• kurento-repository-client : Java library that wraps the REST communication with the server, exposing a Java
API which can be consumed in Java applications.

In short, the kurento-repository-server allows media recording and playing. These capabilities can be consumed by
any application by means of the REST API, of specifically by Java application using the kurento-repository-client.
The media in the repository can be consumed by kurento-media-server using HTTP as transport.

3

http://www.kurento.org/

KurentoRepository Documentation, Release 6.6.1-dev

1.1 Example

There is a Kurento Java tutorial application that connects to a running instance of the kurento-repository-server to
record and play media over HTTP using the capabilities of the Kurento Media Server.

1.2 Source code

Kurento Repository is open source (Apache 2.0) and it is hosted on GitHub. This Git repository contains a Maven
project with the following modules:

• kurento-java: Reactor project.

• kurento-repository-server: Contains a Spring Boot application, very easy to setup and run. It exposes the HTTP
REST API

• kurento-repository-client: Wrapper for the library, offering a simpler Java API.

• kurento-repository-internal: core Java library of repository. Plain Java mostly, but with Spring dependencies.

1.3 Content of this documentation

In order to learn how to build, configure and run the server application, please refer to the Repository Server section.
The REST API that can be used to communicate with the server are described in the next section. The Java API is
depicted on the section repository client. The complete JavaDoc reference is also provided. Finally, a reference of the
most important terms handled in this documentation is summarized in the glossary section.

4 Chapter 1. Introduction

https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-repository
http://www.kurento.org
https://github.com/Kurento/kurento-java/tree/master/kurento-repository

CHAPTER 2

Repository Server

This section explains how to build configure and run the Kurento Repository server as a standalone application.

2.1 Dependencies

• Ubuntu 14.04 LTS

• Java JDK version 7 or 8

• MongoDB (we provide an install guide)

• Kurento Media Server or connection with a running instance (to install follow the official guide)

2.2 Binaries

To build the installation binaries from the source code you’ll need to have installed on your machine Git, Java JDK
and Maven.

Clone the parent project, kurento-java from its GitHub repository.

$ git clone git@github.com:Kurento/kurento-java.git

Then build the kurento-repository-server project together with its required modules:

$ cd kurento-java
$ mvn clean package -DskipTests -Pdefault -am \

-pl kurento-repository/kurento-repository-server

Now unzip the generated install binaries (where x.y.z is the current version and could include the -SNAPSHOT
suffix):

$ cd kurento-repository/kurento-repository-server/target
$ unzip kurento-repository-server-x.y.z.zip

5

http://doc-kurento.readthedocs.org/en/stable/installation_guide.html
https://github.com/Kurento/kurento-java

KurentoRepository Documentation, Release 6.6.1-dev

2.3 Configuration

The configuration file, kurento-repo.conf.json is located in the config folder inside the uncompressed
installation binaries. When installing the repository as a system service, the configuration files will be located after the
installation inside /etc/kurento.

$ cd kurento-repository-server-x.y.z
$ vim config/kurento-repo.conf.json

The default contents of the configuration file:

{
"repository": {
"port": 7676,
"hostname": "127.0.0.1",

//mongodb or filesystem
"type": "mongodb",

"mongodb": {
"dbName": "kurento",
"gridName": "kfs",
"urlConn": "mongodb://localhost"

},
"filesystem": {

"folder": "/tmp/repository"
}

}
}

These properties and their values will configure the repository application.

• port and hostname are where the HTTP repository servlet will be listening for incoming connections (REST
API).

• type indicates the storage type. The repository that stores media served by KMS can be backed by GridFS on
MongoDB or it can use file storage directly on the system’s disks (regular filesystem).

• mongodb configuration:

– dbname is the database name

– gridName is the name of the gridfs collection used for the repository

– urlConn is the connection to the Mongo database

• filesystem configuration:

– folder is a local path to be used as media storage

2.4 Logging configuration

The logging configuration is specified by the file kurento-repo-log4j.properties, also found in the
config folder.

$ cd kurento-repository-server-x.y.z
$ vim config/kurento-repo-log4j.properties

6 Chapter 2. Repository Server

KurentoRepository Documentation, Release 6.6.1-dev

In it, the location of the server’s output log file can be set up, the default location will be
kurento-repository-server-x.y.z/logs/ (or /var/log/kurento/ for system-wide installations).

To change it, replace the ${kurento-repo.log.file} variable for an absolute path on your system:

2.5 Execution

There are two options for running the server:

• user-level execution - doesn’t need additional installation steps, can be done right after uncompressing the
installer

• system-level execution - requires installation of the repository application as a system service, which enables
automatic startup after system reboots

In both cases, as the application uses the Spring Boot framework, it executes inside an embedded Tomcat container
instance, so there’s no need for extra deployment actions (like using a third-party servlet container). If required, the
project’s build configuration could be modified in order to generate a WAR instead of a JAR.

2.6 Run at user-level

After having configured the server instance just execute the start script:

$ cd kurento-repository-server-x.y.z
$./bin/start.sh

2.7 Run as daemon

First install the repository after having built and uncompressed the generating binaries. sudo privileges are required to
install it as a service:

$ cd kurento-repository-server-x.y.z
$ sudo ./bin/install.sh

The service kurento-repo will be automatically started.

Now, you can configure the repository as stated in the previous section and restart the service.

$ sudo service kurento-repo {start|stop|status|restart|reload}

2.8 Version upgrade

To update to a newer version, it suffices to follow once again the installation procedures.

2.9 Installation over MongoDB

For the sake of testing kurento-repository on Ubuntu (14.04 LTS 64 bits), the default installation of MongoDB is
enough. Execute the following commands (taken from MongoDB webpage):

2.5. Execution 7

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

KurentoRepository Documentation, Release 6.6.1-dev

$ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
$ echo "deb http://repo.mongodb.org/apt/ubuntu \

"$(lsb_release -sc)"/mongodb-org/3.0 multiverse" \
| sudo tee /etc/apt/sources.list.d/mongodb-org-3.0.list

$ sudo apt-get update
$ sudo apt-get install -y mongodb-org

8 Chapter 2. Repository Server

CHAPTER 3

Repository REST API

This section details the REST API through which an application can communicate with the Kurento Repository Server.

There’s also the possibility to integrate the server as a Spring component and in this case the class org.kurento.
repository.RepositoryService can be used to control the Repository as an instance local to the application.
The REST API maps over the service’s one, so the methods and parameters involved are the exact same ones.

Primitives provided by the repository server, can be used to control items from the repository (add, delete, search,
update, get download URL).

• Create repository item

• Remove repository item

• Get repository item read endpoint

• Find repository items by metadata

• Find repository items by metadata regex

• Get the metadata of a repository item

• Update the metadata of a repository item

3.1 Create repository item

• Description: Creates a new repository item with the provided metadata and its associated recorder endpoint.

• Request method and URL: POST /repo/item

• Request Content-Type: application/json

• Request parameters: Pairs of key-value Strings in JSON format (a representation of the Java object
Map<String, String>).

9

KurentoRepository Documentation, Release 6.6.1-dev

Parameter Type Description
keyN O Metadata associated to keyN
M=Mandatory, O=Optional

• Request parameters example:

{
"key1": "value1",
"keyN": "valueN"

}

• Response elements: Returns an entity of type application/json including a POJO of type
RepositoryItemRecorder with the following information:

Element Type Description
id M Public ID of the newly created item
url M URL of the item’s recording Http endpoint
M=Mandatory, O=Optional

• Response example:

{
"id": "Item's public ID",
"url": "Recorder Http endpoint"

}

• Response Codes:

Code Description
200 OK New item created and ready for recording.

3.2 Remove repository item

• Description: Removes the repository item associated to the provided id.

• Request method and URL: DELETE /repo/item/{itemId}

• Request Content-Type: NONE

• Request parameters: The item’s ID is coded in the URL’s path info.

Parameter Type Description
itemId M Repository item’s identifier
M=Mandatory, O=Optional

• Response elements: NONE

• Response Codes:

Code Description
200 OK Item successfully deleted.
404 Not Found Item does not exist.

10 Chapter 3. Repository REST API

KurentoRepository Documentation, Release 6.6.1-dev

3.3 Get repository item read endpoint

• Description: Obtains a new endpoint for reading (playing multimedia) from the repository item.

• Request method and URL: GET /repo/item/{itemId}

• Request Content-Type: NONE

• Request parameters: The item’s ID is coded in the URL’s path info.

Parameter Type Description
itemId M Repository item’s identifier
M=Mandatory, O=Optional

• Response elements: Returns an entity of type application/json including a POJO of type
RepositoryItemPlayer with the following information:

Element Type Description
id M Public ID of the newly created item
url M URL of the item’s reading (playing) Http endpoint
M=Mandatory, O=Optional

• Response example:

{
"id": "Item's public ID",
"url": "Player Http endpoint"

}

• Response Codes:

Code Description
200 OK New player item created.
404 Not Found Item does not exist.

3.4 Find repository items by metadata

• Description: Searches for repository items by each pair of attributes and their exact values.

• Request method and URL: POST /repo/item/find

• Request Content-Type: application/json

• Request parameters: Pairs of key-value Strings in JSON format (a representation of the Java object
Map<String, String>).

Parameter Type Description
searchKeyN M Metadata associated to searchKeyN
M=Mandatory, O=Optional

• Request parameters example:

3.3. Get repository item read endpoint 11

KurentoRepository Documentation, Release 6.6.1-dev

{
"searchKey1": "searchValue1",
"searchKeyN": "searchValueN"

}

• Response elements: Returns an entity of type application/json including a POJO of type
Set<String> with the following information:

Element Type Description
idN O

Id of the N-th repository item
whose metadata
matches one of the search terms

M=Mandatory, O=Optional

• Response example:

["id1", "idN"]

• Response Codes:

Code Description
200 OK Query successfully executed.

3.5 Find repository items by metadata regex

• Description: Searches for repository items by each pair of attributes and their values which can represent a
regular expression (Perl compatible regular expressions).

• Request method and URL: POST /repo/item/find/regex

• Request Content-Type: application/json

• Request parameters: Pairs of key-value Strings in JSON format (a representation of the Java object
Map<String, String>).

Parameter Type Description
searchKeyN M Regex for metadata associated to searchKeyN
M=Mandatory, O=Optional

• Request parameters example:

{
"searchKey1": "searchRegex1",
"searchKeyN": "searchRegexN"

}

• Response elements: Returns an entity of type application/json including a POJO of type
Set<String> with the following information:

12 Chapter 3. Repository REST API

http://php.net/manual/en/book.pcre.php

KurentoRepository Documentation, Release 6.6.1-dev

Element Type Description
idN O

Id of the N-th repository item
whose metadata
matches one of the search terms

M=Mandatory, O=Optional

• Response example:

["id1", "idN"]

• Response Codes:

Code Description
200 OK Query successfully executed.

3.6 Get the metadata of a repository item

• Description: Returns the metadata from a repository item.

• Request method and URL: GET /repo/item/{itemId}/metadata

• Request Content-Type: NONE

• Request parameters: The item’s ID is coded in the URL’s path info.

Parameter Type Description
itemId M Repository item’s identifier
M=Mandatory, O=Optional

• Response elements: Returns an entity of type application/json including a POJO of type
Map<String, String> with the following information:

Element Type Description
keyN O Metadata associated to keyN
M=Mandatory, O=Optional

• Response example:

{
"key1": "value1",
"keyN": "valueN"

}

• Response Codes:

Code Description
200 OK Query successfully executed.
404 Not Found Item does not exist.

3.6. Get the metadata of a repository item 13

KurentoRepository Documentation, Release 6.6.1-dev

3.7 Update the metadata of a repository item

• Description: Replaces the metadata of a repository item with the provided values from the request’s body.

• Request method and URL: PUT /repo/item/{itemId}/metadata

• Request Content-Type: application/json

• Request parameters: The item’s ID is coded in the URL’s path info and the request’s body contains key-value
Strings in JSON format (a representation of the Java object Map<String, String>).

Parameter Type Description
itemId M Repository item’s identifier
keyN O Metadata associated to keyN
M=Mandatory, O=Optional

• Request parameters example:

{
"key1": "value1",
"keyN": "valueN"

}

• Response elements: NONE

• Response Codes:

Code Description
200 OK Item successfully updated.
404 Not Found Item does not exist.

14 Chapter 3. Repository REST API

CHAPTER 4

Repository Client

This Java library belonging to the Kurento Repository stack has been designed using the Retrofit framework in order
to provide a Java wrapper for the HTTP REST interface exposed by the repository server.

4.1 Repository Java API

This API maps directly over the REST interface layer, in such a way that the primitives exposed by this library mirror
the REST ones.

The Java documentation included in org.kurento.repository.RepositoryClient and its factory org.
kurento.repository.RepositoryClientProvider is quite detailed so it shouldn’t be very difficult to set
up a client connected to a running Kurento Repository Server (don’t forget to check our tutorials, and especially the
kurento-hello-world-repository).

This library can be imported as a Maven dependency and then instances of org.kurento.repository.
RepositoryClient can be created in order to interact with the repository server. The Maven artifact to be included
in you pom.xml is

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-repository-client</artifactId>
<version>6.6.1-SNAPSHOT</version>

</dependency>

We provide a Kurento Java tutorial, kurento-hello-world-repository , which uses this library to save the streamed media
from a web browser using a repository server instance.

4.2 Repository internals

The internal library of Kurento Repository provides an API that can be used to manage media repositories based on
filesystem or MongoDB.

15

https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-repository
https://github.com/Kurento/kurento-tutorial-java/tree/master/kurento-hello-world-recording

KurentoRepository Documentation, Release 6.6.1-dev

The chosen transport for the media is the HTTP protocol. The repository API will provide managed URIs which the
application or Kurento Media Server can use to upload or download media.

This library can be configured and instantiated as a Spring bean. Although, it shouldn’t be used directly but through
the repository server which offers a REST and Java APIs which should suffice for most applications.

16 Chapter 4. Repository Client

CHAPTER 5

Glossary

This is a glossary of terms that often appear in discussion about multimedia transmissions. Most of the terms are
described and linked to its wikipedia, RFC or W3C relevant documents. Some of the terms are specific to kurento.

BSON It’s a computer data interchange format used mainly as a data storage and network transfer format in the
MongoDB database. It is a binary form for representing simple data structures and associative arrays (called
objects or documents in MongoDB).

HTTP The is an application protocol for distributed, collaborative, hypermedia information systems. HTTP is the
foundation of data communication for the World Wide Web.

See also:

RFC 2616

JSON JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is designed to be easy to
understand and write for humans and easy to parse for machines.

JSON-RPC JSON-RPC is a simple remote procedure call protocol encoded in JSON. JSON-RPC allows for notifi-
cations and for multiple calls to be sent to the server which may be answered out of order.

Kurento Kurento is a platform for the development of multimedia enabled applications. Kurento is the Esperanto
term for the English word ‘stream’. We chose this name because we believe the Esperanto principles are inspir-
ing for what the multimedia community needs: simplicity, openness and universality. Kurento is open source,
released under Apache 2.0, and has several components, providing solutions to most multimedia common ser-
vices requirements. Those components include: Kurento Media Server, Kurento API, Kurento Protocol, and
Kurento Client.

Kurento API Kurento API is an object oriented API to create media pipelines to control media. It can be seen as
and interface to Kurento Media Server. It can be used from the Kurento Protocol or from Kurento Clients.

Kurento Client A Kurento Client is a programming library (Java or JavaScript) used to control Kurento Media
Server from an application. For example, with this library, any developer can create a web application that uses
Kurento Media Server to receive audio and video from the user web browser, process it and send it back again
over Internet. Kurento Client exposes the Kurento API to app developers.

Kurento Protocol Communication between KMS and clients by means of JSON-RPC messages. It is based on
WebSocket that uses JSON-RPC V2.0 messages for making requests and sending responses.

17

https://tools.ietf.org/html/rfc2616.html
http://json.org
http://json-rpc.org/
http://kurento.org

KurentoRepository Documentation, Release 6.6.1-dev

Kurento Media Server Kurento Media Server is the core element of Kurento since it responsible for media trans-
mission, processing, loading and recording.

Maven Maven is a build automation tool used primarily for Java projects.

MongoDB MongoDB (from humongous) is a cross-platform document-oriented database. Classified as a NoSQL
database, MongoDB eschews the traditional table-based relational database structure in favor of JSON-like
documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain
types of applications easier and faster. MongoDB is free and open-source software.

See also:

page at Wikipedia

MongoDB official page

Multimedia Multimedia is concerned with the computer controlled integration of text, graphics, video, animation,
audio, and any other media where information can be represented, stored, transmitted and processed digitally.

There is a temporal relationship between many forms of media, for instance audio, video and animations. There
2 are forms of problems involved in

• Sequencing within the media, i.e. playing frames in correct order or time frame.

• Synchronisation, i.e. inter-media scheduling. For example, keeping video and audio synchronized or
displaying captions or subtitles in the required intervals.

See also:

Wikipedia definition of

REST

is an architectural style consisting of a coordinated set of constraints applied to components, connectors, and
data elements, within a distributed hypermedia system. The term representational state transfer was introduced
and defined in 2000 by Roy Fielding in his doctoral dissertation.

Retrofit Retrofit is a type-safe REST client for Android built by Square. As stated on its webpage, it turns your HTTP
API into a Java interface.

See also:

Retrofit home page with documentation and examples

Sphinx Documentation generation system used for Brandtalk documentation.

See also:

Easy and beautiful documentation with Sphinx

Spring Boot Spring Boot is Spring’s convention-over-configuration solution for creating stand-alone, production-
grade Spring based applications that can you can “just run”. It embeds Tomcat or Jetty directly and so there is
no need to deploy WAR files in order to run web applications.

WebSocket WebSocket specification (developed as part of the HTML5 initiative) defines a full-duplex single socket
connection over which messages can be sent between client and server.

18 Chapter 5. Glossary

http://maven.apache.org/
https://www.mongodb.org
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://square.github.io/retrofit/
http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat
http://projects.spring.io/spring-boot/
https://www.websocket.org/

Index

B
BSON, 17

H
HTTP, 17

J
JSON, 17
JSON-RPC, 17

K
Kurento, 17
Kurento API, 17
Kurento Client, 17
Kurento Media Server, 18
Kurento Protocol, 17

M
Maven, 18
MongoDB, 18
Multimedia, 18

R
REST, 18
Retrofit, 18
RFC

RFC 2616, 17

S
Sphinx, 18
Spring Boot, 18

W
WebSocket, 18

19

	Introduction
	Example
	Source code
	Content of this documentation

	Repository Server
	Dependencies
	Binaries
	Configuration
	Logging configuration
	Execution
	Run at user-level
	Run as daemon
	Version upgrade
	Installation over MongoDB

	Repository REST API
	Create repository item
	Remove repository item
	Get repository item read endpoint
	Find repository items by metadata
	Find repository items by metadata regex
	Get the metadata of a repository item
	Update the metadata of a repository item

	Repository Client
	Repository Java API
	Repository internals

	Glossary
	Index

